Low-Rank Optimization on the Cone of Positive Semidefinite Matrices
نویسندگان
چکیده
We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y Y T leads to a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second-order optimization method with guaranteed quadratic convergence. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. In contrast to existing methods, the proposed algorithm converges monotonically to the sought solution. Its numerical efficiency is evaluated on two applications: the maximal cut of a graph and the problem of sparse principal component analysis.
منابع مشابه
The geometry of low-rank Kalman filters
An important property of the Kalman filter is that the underlying Riccati flow is a contraction for the natural metric of the cone of symmetric positive definite matrices. The present paper studies the geometry of a low-rank version of the Kalman filter. The underlying Riccati flow evolves on the manifold of fixed rank symmetric positive semidefinite matrices. Contraction properties of the low-...
متن کاملRank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone
The problem of finding a rank-one solution to a system of linear matrix equations arises from many practical applications. Given a system of linear matrix equations, however, such a low-rank solution does not always exist. In this paper, we aim at developing some sufficient conditions for the existence of a rank-one solution to the system of homogeneous linear matrix equations (HLME) over the p...
متن کاملPartial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone
We develop a practical semidefinite programming (SDP) facial reduction procedure that utilizes computationally efficient approximations of the positive semidefinite cone. The proposed method simplifies SDPs with no strictly feasible solution (a frequent output of parsers) by solving a sequence of easier optimization problems and could be a useful pre-processing technique for SDP solvers. We dem...
متن کاملOn the Closure of the Completely Positive Semidefinite Cone and Linear Approximations to Quantum Colorings
The structural properties of the completely positive semidefinite cone CS+, consisting of all the n×n symmetric matrices that admit a Gram representation by positive semidefinite matrices of any size, are investigated. This cone has been introduced to model quantum graph parameters as conic optimization problems. Recently it has also been used to characterize the set Q of bipartite quantum corr...
متن کاملConic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone
We investigate the completely positive semidefinite cone CS+, a new matrix cone consisting of all n×n matrices that admit a Gram representation by positive semidefinite matrices (of any size). In particular, we study relationships between this cone and the completely positive and the doubly nonnegative cone, and between its dual cone and trace positive non-commutative polynomials. We use this n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2010